Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces
نویسندگان
چکیده
This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted L classes. We establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given L space automatically assures their solvability in an extended range of Besov spaces; (3) Well-posedness for the non-homogeneous boundary value problems. In particular, we prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric coefficients. 2010 Mathematics Subject Classification. Primary 35J25, Secondary 31B20, 35C15, 46E35.
منابع مشابه
Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface∗
We consider boundary value problems and transmission problems for strongly elliptic second-order systems with boundary conditions on a compact nonclosed Lipschitz surface S with Lipschitz boundary. The main goal is to find conditions for the unique solvability of these problems in the spaces H , the simplest L2-spaces of the Sobolev type, with the use of potential type operators on S . We also ...
متن کاملLinear and nonlinear degenerate boundary value problems in Besov spaces
Keywords: Boundary value problems Differential-operator equations Banach-valued Besov spaces Operator-valued multipliers Interpolation of Banach spaces a b s t r a c t The boundary value problems for linear and nonlinear degenerate differential-operator equations in Banach-valued Besov spaces are studied. Several conditions for the separability of linear elliptic problems are given. Moreover, t...
متن کاملLinear Elliptic Boundary Value Problems with Non-smooth Data: Normal Solvability on Sobolev–Campanato Spaces
In this paper linear elliptic boundary value problems of second order with non-smooth data (L∞-coefficients, Lipschitz domains, regular sets, non-homogeneous mixed boundary conditions) are considered. It is shown that such boundary value problems generate Fredholm operators between appropriate Sobolev–Campanato spaces, that the weak solutions are Hölder continuous up to the boundary and that th...
متن کاملSquare function estimates on layer potentials for higher-order el- liptic equations
In this paper we continue towards the goal of resolving the Dirichlet and Neumann problems for general divergence form higher order elliptic operators with L data. The investigation of the second-order case has spanned the past three decades in the subject, drawing from the field of harmonic analysis and giving back to it many tools, and by now the real coefficient case is relatively well under...
متن کاملAnalytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations
An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...
متن کامل